## A New Radioimmunoassay for Plasma L-Triiodothyronine:

# Measurements in Thyroid Disease and

## in Patients Maintained on Hormonal Replacement

MARTIN I. SURKS, ALAN R. SCHADLOW, and JACK H. OPPENHEIMER

From the Endocrine Research Laboratory, Division of Endocrinology, Department of Medicine, Montefiore Hospital and Medical Center and the Albert Einstein College of Medicine, Bronx, New York 10467

ABSTRACT A new procedure for the radioimmunoassay of L-triiodothyronine (T<sub>3</sub>) in human plasma is described in which the iodothyronines are separated from the plasma proteins before incubation with a specific antiserum to T<sub>3</sub>. The antibody bound and free T<sub>3</sub> are separated with dextran-coated charcoal. In this system, the mean recovery of T<sub>3</sub> added to plasma was 97.9% and both in vitro conversion of L-thyroxine (T<sub>4</sub>) to T<sub>3</sub> and crossreaction between T4 and the anti-T3 antibody were undetectable (less than 0.1%). The assay procedure allowed the measurement of T<sub>s</sub> in up to 0.5 ml of plasma resulting in improved assay sensitivity (6 ng/100 ml). The mean plasma T<sub>3</sub> in normal subjects was 146±24 ng/100 ml (sp). Mean T<sub>3</sub> concentration was increased in hyperthyroidism (665±289 ng/100 ml) and decreased in hypothyroidism (44±26 ng/100 ml). In patients with severe hypothyroidism, plasma T<sub>3</sub> was between 7 and 30 ng/100 ml. Plasma T<sub>3</sub> concentration was relatively constant throughout the day in three euthyroid subjects. In contrast, in hypothyroid subjects on replacement therapy with T<sub>3</sub>, a T<sub>4</sub>: T<sub>3</sub> combination or desiccated thyroid plasma Ta was markedly elevated for several hours after ingestion of the medication. Plasma T3 was unchanged throughout the day in patients treated with T<sub>1</sub>. Thus, insofar as plasma T<sub>3</sub> levels are concerned, replacement therapy with T<sub>4</sub> appears to mimic the euthyroid state more closely than other preparations.

#### INTRODUCTION

During the last four years considerable attention has been paid to the development of methods for measurement of the plasma concentration of 3,5,3'-triiodo-L-thyronine  $(T_3)$ . The interest of many investigators has been stimulated by three factors: (a) the well-known greater biological activity of  $T_3$  compared with L-thyroxine  $(T_4)$  (1); (b) the demonstration by Braverman, Ingbar, and Sterling (2) that  $T_4$  is converted to  $T_3$  in vivo; and (c), the recent capability to measure  $T_3$  turnover rates in man (3). These data suggest that the major portion of thyroid metabolic activity may be due to  $T_3$  rather than  $T_4$ . The possibility that  $T_4$  has no intrinsic biological activity but serves as a prohormone for  $T_3$  has been suggested (4-7).

Several methods for the determination of T<sub>3</sub> have been reported which involve extraction of the iodothyronines from the serum followed by chromatographic separation of T<sub>3</sub> from T<sub>4</sub> and measurement of T<sub>3</sub> by displacement analysis (8, 9). These procedures are technically difficult and have resulted in overestimation of serum T3 due to conversion of T<sub>4</sub> to T<sub>3</sub> in vitro or from incomplete separation of T<sub>4</sub> from T<sub>3</sub> before T<sub>3</sub> measurement (10, 11). More recently, the production of specific antibodies to T<sub>3</sub> has been achieved (12–15), and several reports describing the determination of T<sub>3</sub> by radioimmunoassay of unextracted plasma have appeared (12, 13, 15-19). The current report describes a new procedure for the radioimmunoassay of T3 which allows measurement of T3 in large serum volumes (up to 0.5 ml). The sensitivity of the assay is thereby improved enabling an accurate as-

Dr. Oppenheimer is a Career Scientist of the Health Research Council of the City of New York (1-222).

Received for publication 23 June 1972 and in revised form 15 August 1972.

<sup>&</sup>lt;sup>1</sup> Abbreviations used in this paper: BSA, bovine serum albumin; RIA, radioimmunoassay; T<sub>8</sub>, triiodo-L-thyronine; T<sub>1</sub>, L-thyroxine; B-T<sub>2</sub>, antibody bound T<sub>3</sub>; F-T<sub>3</sub>, antibody free T<sub>8</sub>.

<sup>&</sup>lt;sup>2</sup> Surks, M. I., A. R. Schadlow, and J. H. Oppenheimer. 1972. Determination of iodothyronine absorption and conversion of L-thyroxine (T<sub>4</sub>) to L-triiodothyronine (T<sub>3</sub>) using turnover rate techniques. Submitted for publication in J. Clin. Invest.

sessment of the T<sub>3</sub> concentration in hypothyroidism. The concentration of T<sub>3</sub> in euthyroid, hypo- and hyperthyroid subjects as well as in hypothyroid patients under treatment with different thyroid hormone preparations will be presented.

### **METHODS**

The concentration of T<sub>3</sub> in serum or plasma was determined by radioimmunoassay after separation of the hormone from the plasma proteins on small Sephadex columns (20). The barrels of disposable 3.0 ml syringes (Becton-Dickinson & Co., Rutherford, N. J.) with small glass-wool plugs were used for columns (I.D. = 7 mm). Columns were packed with 3.0 ml of a well-mixed 10% suspension of Sephadex, G25 fine (Pharmacia) in 0.1 N NaOH. After packing, they were washed with 2.0 ml 0.1 N NaOH and the bottoms were closed. For the development of standard curves, mixtures of 0.1 ml T<sub>3</sub>-125I (75 pg), 0.1 ml gravimetrically prepared standard T<sub>3</sub> solutions (50-1000 pg/0.1 ml 0.3% bovine serum albumin [BSA] in 0.075 M barbital buffer, pH 8.6), and 0.1 ml 0.1 N NaOH were applied to the columns with Pasteur pipettes. When sera were analyzed, 0.02-0.5 ml human serum was substituted for the T<sub>3</sub> standards. All of the  $T_{8^{-125}}I$  in the system was thus added before fractionation on the Sephadex columns. The test tubes in which the samples were prepared were washed with 0.1 N NaOH and the washes were applied to the columns. The columns were then opened. After the samples had percolated through the Sephadex, the columns were washed twice with 1.5 ml 0.075 M barbital, pH 8.6 (barbital buffer), in order to ensure elution of the plasma proteins and to equilibrate the columns at pH 8.6. Studies with different mixtures of serum or albumin enriched with albumin-131 I and T<sub>3</sub>-125 I or T<sub>4</sub>-<sup>125</sup>I showed that more than 99% of the plasma proteins but only 4-8% of the applied iodothyronines were eluted by these procedures. The iodothyronines were then eluted with 0.3% BSA in barbital buffer (BSA buffer). First 0.4 ml BSA was applied and allowed to drain into the column. Four 0.5 ml portions of BSA buffer were then separately applied and the eluates collected as a single pool (approximately 2.0 ml). After gentle mixing, two 0.9 ml portions of the combined BSA eluate from each column were pipetted into disposable 12 × 77 mm plastic test tubes (Falcon Plastics, Los Angeles, Calif.) The tubes were placed in an ice bath and 0.2 ml of a rabbit anti-T<sub>3</sub> antibody solution (see below) was added. The tubes were then mixed (Vortex, Scientific Industries, Inc., Springfield, Mass.) and incubated at 4°C. Trial experiments had shown that equilibration between antibody bound and free T<sub>8</sub> occurred within 16 hr. Therefore, after 18-20 hr incubation, the antibody bound (B-T<sub>3</sub>) and free T<sub>3</sub> (F-T<sub>3</sub>) were separated by the addition of 1.0 ml of a dextran-coated charcoal suspension at 4°C. The charcoal suspension was prepared by mixing equal volumes of 1% solutions in barbital buffer of activated charcoal (Norit A, Fisher Chemical Co., New York) and dextran, clinical grade, mol wt 70,000-90,000 (Nutritional Biochemicals Corp., Cleveland, Ohio). The charcoal and supernatant were separated by centrifugation 15 min after the charcoal solution was added. The counting rates of both the supernatant containing B-T3 and the charcoal (F-T3) were measured in a Packard Autogamma Spectrometer, Model 410A. Samples were counted for a sufficient time to limit counting error to 5%.

Antibodies to T<sub>3</sub> were raised in six rabbits and eight guinea pigs by injection of T<sub>3</sub>-BSA conjugates which were

prepared by the method of Gharib and Mayberry (13, 15). The T<sub>8</sub>: BSA molar ratios of the different preparations of conjugates which were synthesized varied between 7-10:1 as determined from the recovery of tracer amounts of T<sub>8</sub>-125I added before conjugation. ½ mg of conjugate was homogenized in 0.5 ml complete Freund's adjuvant and injected into each animal every 14 days. Blood was collected by cardiac puncture 1 wk after the fourth injection. Sera from all rabbits and from four of the eight guinea pigs contained antibodies to T3 which were suitable for the radioimmunoassay of T<sub>3</sub>. A rabbit serum (R4-T<sub>3</sub>-AB-#3) was selected for these studies and used at a final dilution of 1:8000 in BSA buffer. The binding properties of R4-T3-AB-#3 and various T<sub>3</sub> and T<sub>4</sub> analogues were not assessed. However, since no significant differences in T<sub>3</sub> concentration were observed in 25 human sera obtained from hypothyroid, euthyroid, and hyperthyroid subjects between assays performed both with R4-T3-AB-#3 and with a well-characterized rabbit antiserum to T<sub>3</sub> (R9, 10/17/70) (kindly supplied by Dr. Robert E. Mayberry) it is doubtful whether small amounts of T<sub>3</sub> or T<sub>4</sub> analogues which may circulate in the plasma interfere with our T<sub>3</sub> measurements.

 $T_3$  labeled with  $^{125}I$  (Triomet- $^{125}I$ , specific activity 70–90 mCi/mg),  $T_4$ - $^{125}I$  (Tetramet- $^{125}I$ , specific activity 70 mCi/ mg), and albumin-181 I were obtained from Abbott Laboratories, North Chicago, Ill. A single T<sub>3</sub>-125I preparation was used for 4-6 wk without purification since paper chromatographic analyses demonstrated that these preparations contained 93-96% T<sub>3</sub> and less than 2% iodide-125I even after this interval of time. Since the recovery of T3 from the Sephadex columns was not uniform (65-80% in the 2.0 ml BSA eluate) it was necessary to determine precisely the specific activity of the added tracer so that appropriate corrections for the mass of T<sub>3</sub> in the added T<sub>3</sub>-125I could be made. The specific activity of each batch of Ta-125I was therefore determined by radioimmunoassay by the method outlined by Berson and Yalow (21). Mixtures of T<sub>3</sub> standards (50-400 pg in 0.1 ml BSA buffer) were added to 0.1 ml  $T_{\rm s}^{-125}I$  (50 pg  $T_{\rm s}$  as estimated from the specific activity of  $T_3$ -<sup>125</sup>I furnished by the manufacturer). Some tubes contained 0.2 ml and 0.3 ml of the T<sub>3</sub>-125 I tracer solution without nonradiative T<sub>3</sub>. T<sub>3</sub> antibody was added and the volume of all tubes adjusted to 1.1 ml with BSA buffer. After 18-20 hours incubation, B-T<sub>8</sub> and F-T<sub>3</sub> were separated as described above. A standard curve was plotted (B/F ratios vs. added nonradiative T<sub>3</sub>) and the mass of T<sub>3</sub> in the T<sub>3</sub>-125I solution was determined from the B/F ratios of the tubes containing two- and threefold volumes of tracer solution.

Calculations. Since the BSA eluate from each column was divided (two 0.9 ml samples), two assay tubes were processed for each Sephadex column. The two B/F ratios for each BSA column eluate were plotted against the total T<sub>3</sub> in each assay tube and a standard curve was drawn. Total T<sub>3</sub> was calculated as the product of the recovery of  $T_{s-125}I$  in each assay tube (30-35%) (cpm B-T<sub>3</sub> + cpm F-T<sub>3</sub>/cpm added T<sub>3</sub>- $^{125}I$ ) and the mass of T<sub>8</sub> (standards + T<sub>8</sub>-<sup>126</sup>I) applied to each column. Total T<sub>8</sub> content in assay tubes containing serum was determined from their B/F ratios and the standard curve in the usual fashion. The contribution of  $T_3$  in the  $T_3$ - $^{125}I$  added to each sample was calculated as the product: recovery of  $T_3$ - $^{125}I$  in each tube and the mass of T<sub>3</sub> in the added tracer. The total T<sub>3</sub> was then corrected for T<sub>8</sub> in the tracer. The resulting figure corrected for recovery (T<sub>3</sub>-<sup>125</sup>I) and sample volume is equivalent to the concentration of T<sub>3</sub> in serum. The average contribution of T3 in the added T3-125I to the total T8 of sera

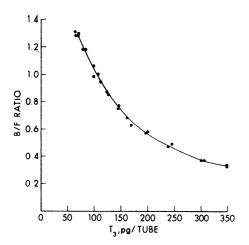



FIGURE 1 Representative standard assay curve. Mixtures of  $T_{s}$ -<sup>128</sup>I, 0.1 N NaOH, 0.3 ml  $T_{s}$ -free serum, and increasing amounts of nonradioactive  $T_{s}$  were applied to the Sephadex columns. The two B/F ratios for each column eluate are plotted.

from euthyroid and hyperthyroid subjects was approximately 20%. For sera in the hypothyroid range the  $T_3$  in  $T_3$ -125I constituted 30-40% of the total  $T_3$  measured.

T<sub>4</sub> to T<sub>3</sub> conversion in vitro. Since the serum concentration of T4 greatly exceeds that of T3, monodeiodination of T<sub>4</sub> in vitro can result in a major overestimation of serum T<sub>8</sub>. Special attention was, therefore, paid to assessing T<sub>4</sub> to T<sub>8</sub> conversion during the assay procedure. Our approach was to measure the T<sub>3</sub> concentration of T<sub>3</sub>-free serum enriched with purified T<sub>4</sub>. In three experiments, different amounts of L-thyroxine (Mann Research Labs, Inc., New York) purified by serial paper chromatography (two cycles) in t-amyl alcohol: 2 N NH4OH: hexane, 5:6:1 were added to T<sub>3</sub>-free serum which was then assayed for T<sub>3</sub>, T<sub>3</sub>-free serum was prepared by adding 20 ml of a serum pool from euthyroid subjects enriched with  $T_{3}$ - $^{125}I$  (0.1  $\mu$ Ci/ml) to 4 g Dowex 1-X2 anion-exchange resin (BioRad Laboratories, Richmond, Calif.). After mixing for 20 hr at 4°C, the serum was separated from the resin by centrifugation. Fresh resin was added and the procedure was repeated. As assessed from the counting rates of T<sub>3</sub>-<sup>125</sup>I before and after mixing with resin, more than 99% of the T<sub>3</sub> was removed from the serum.

Another approach was to assess the generation of T<sub>3</sub>-125I after carrying out the assay procedure in the presence of purified T<sub>4-125</sub>I. T<sub>4-125</sub>I, purified as described above for nonradioactive T4, was added to 2.5 ml BSA buffer. ½ ml of this solution was processed by the Sephadex column procedure described above for the assay of T<sub>3</sub>. The 2.0 ml BSA buffer eluate containing the eluted iodothyronines was incubated with T<sub>3</sub> antibody for 18 hr at 4°C. After incubation, the iodothyronines were extracted with 95% ethanol (four extractions with 10 ml 95% ethanol). T<sub>3</sub>-131 was added to the combined ethanol extracts and the amount of T<sub>8</sub>-<sup>125</sup>I (relative to  $T_4$ -<sup>125</sup>I) was determined by serial chromatography of the  $T_8$  area on paper and thin-layer silica gel sheets to constant isotopic ratio (T<sub>3</sub>-125I/T<sub>3</sub>-131I) as previously described (4). The T<sub>3</sub>-125I content of the added T<sub>4</sub>-<sup>125</sup>I was simultaneously measured by the same procedures in solutions of 2.0 ml BSA buffer which were incubated

under the same conditions but had not been subjected to Sephadex column fractionation.

T<sub>4</sub> cross-reaction. The extent of cross-reaction between T<sub>4</sub> and T<sub>3</sub>-antibody was assessed in three experiments by determining the T<sub>3</sub> concentration of pooled serum before and after selective removal of T<sub>4</sub>. T<sub>3</sub>-free serum was diluted 1:20 in barbital buffer and enriched with nonradioactive  $T_4$  and  $T_3$ , as well as  $T_3^{-125}I$  and  $T_4^{-131}I$ . The concentration of T<sub>8</sub> was measured in eight samples (0.15 ml) from this pool. Eight additional samples (0.5 ml) were applied to individual columns containing Sephadex G-25 M (Pharmacia) equilibrated with barbital buffer, pH 8.6. The column size and amount of Sephadex were identical to that described above for the T<sub>3</sub> assay. At pH 8.6, the plasma proteins bind T4 to a greater degree than T3. Thus, a greater fraction of the added T<sub>3</sub> than the added T<sub>4</sub> is retained by the Sephadex. The columns were then washed with 3.0 ml barbital buffer and the retained iodothyronines were eluted in 2.0 ml BSA buffer. T<sub>3</sub> antibody was added to two 0.9 ml portions of the eluate and the T<sub>3</sub> concentration determined as described above. The recovery of both T4 and T3 was calculated from the counting rates of their respective isotopes.

Clinical studies. The concentration of T<sub>3</sub> was determined in the serum or plasma of 37 euthyroid subjects, 29 patients with hypothyroidism, and 22 patients with hyperthyroidism. The euthyroid subjects were hospital personnel with normal thyroid glands by palpation and with no family history of thyroid disease. The hypo- and hyperthyroid patients had typical clinical syndromes. Diagnoses were confirmed by other laboratory tests including serum T<sub>4</sub> concentration (competitive protein binding) (Bioscience Laboratories, Van Nuys, Calif.), 24 hr thyroidal uptake of <sup>133</sup>I, and serum TSH concentration (22). The human TSH and anti-TSH antiserum used in the radioimmunoassay of TSH were gifts from the National Pituitary Agency. Research Standard A was kindly supplied by the Medical Research Council, Mill Hill, Great Britain.

Serum T<sub>3</sub> and T<sub>1</sub> concentrations were also measured in three euthyroid subjects at frequent intervals throughout the day and in patients with hypothyroidism receiving hormone replacement therapy. The hormone preparations which were administered to these patients were L-T<sub>3</sub> (Cytomel; Smith, Kline & French Laboratories, Philadelphia, Pa.), L-T<sub>4</sub> (Synthyroid, Flint Laboratories, Morton Grove, Ill.), L-T<sub>1</sub>: L-T<sub>3</sub> combination, 4:1 (Euthyroid, Warner-Chilcott Laboratories, Morris Plains, N. J.), and desiccated thyroid (Armour Pharmaceutical Co., Chicago, Ill.). Serum T<sub>3</sub> and T<sub>4</sub> were measured before and at frequent intervals after the various preparations were ingested. After separation by centrifugation, serum or plasma was stored at -20°C.

#### RESULTS

Methodologic procedures. The capacity of the Sephadex columns to retain T<sub>s</sub> when different amounts of plasma were applied was assessed by addition of mixtures of T<sub>s</sub>-<sup>125</sup>I in 0.1 N NaOH and 0.1 to 0.5 ml normal plasma to the columns followed by elution of the plasma proteins with 3.0 barbital buffer. Comparison of the counting rates of the Sephadex to that of the added T<sub>s</sub>-<sup>126</sup>I showed that when 0.1–0.3 ml plasma was applied, 95–98% of the T<sub>s</sub> was retained by the Sephadex. When the volume of plasma was increased to 0.4–0.5 ml, 83-

92% of the added T<sub>8</sub> was retained. An average of 80% (range: 70-90%) of the Sephadex-bound T<sub>8</sub> was eluted by 2.0 ml 0.3% BSA. Thus, the average recovery of T<sub>8</sub> in the 2.0 ml BSA eluate was approximately 70%. Since two 0.9 ml portions of the BSA eluates from each column were assayed, the net recovery of T<sub>8</sub> in each assay tube averaged 32% (range: 25-35%). Recovery was equally good when sera containing low endogenous T<sub>8</sub> concentrations were processed. Essentially similar recoveries for T4 were observed in experiments in which T<sub>4</sub>-125I was substituted for T<sub>8</sub>-125I. The equal recovery of T<sub>3</sub> and T<sub>4</sub> by these procedures can be attributed to the essentially complete disruption of iodothyronine binding by the plasma proteins at the high pH of the Sephadex columns. The B/F ratios for paired tubes from the same column eluate differed by less than 5%.

In order to determine whether the T<sub>8</sub>-free serum or the Sephadex contained substances which under the conditions of the assay might displace T<sub>8</sub> from T<sub>8</sub> antibody, 0.1 ml 0.1 n NaOH alone or with 0.3 ml T<sub>8</sub>-free serum were applied to separate Sephadex columns followed by 3.0 ml barbital buffer and 2.0 ml BSA buffer. Duplicate 0.9 ml portions from each column BSA eluate were added to tubes containing T<sub>8</sub>-126 I (50 pg) and T<sub>8</sub>-antibody. The B/F ratios in these tubes were identical to those of other tubes which contained fresh BSA buffer, indicating that no interfering substances were present in either the Sephadex or serum. In the same assays, the addition of 10 pg T<sub>8</sub> reproducibly decreased the B/F ratio.

Standard curves were then developed by applying mixtures containing T<sub>8</sub>-125 I (75 pg), 0.1 N NaOH, 0.3 ml T<sub>8</sub>-free serum and increasing amounts of nonradioactive T<sub>8</sub> (50-1000 pg) to the Sephadex columns (Fig.

| TABLE I                 |
|-------------------------|
| T <sub>3</sub> Recovery |
|                         |

| Experi-<br>ment |                 |           |                  |          |
|-----------------|-----------------|-----------|------------------|----------|
|                 | Initial         | Added     | Final            | Recovery |
|                 |                 | ng/100 ml |                  | %        |
| 1               | 3 (0-6)*        | 200       | $198 \pm 9.2$    | 97.7     |
| 2               | $100.2 \pm 6.1$ | 67        | $160.8 \pm 7.2$  | 90.6     |
|                 |                 | 100       | $193.4 \pm 11.2$ | 93.2     |
| 3               | $157.8 \pm 6.8$ | 67        | $220.6 \pm 12.4$ | 93.9     |
|                 |                 | 400       | $574.2 \pm 20.9$ | 104.0    |
| 4               | $200.7 \pm 8.1$ | 75        | $281.4 \pm 11.4$ | 107.5    |
|                 |                 | 150       | $362.6 \pm 14.7$ | 101.0    |
|                 |                 | 300       | $485.4 \pm 16.7$ | 95.0     |

 $T_{\mbox{\scriptsize a}}$  concentrations are expressed as mean  $\pm sD$  for four determinations.

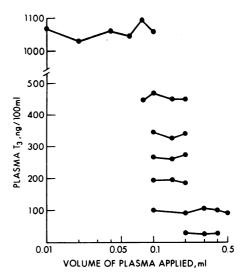



FIGURE 2 The effect of application of different volumes of plasma onto the Sephadex columns on plasma T<sub>8</sub> concentration.

1). Since, in three experiments, substitution of BSA buffer for Ts-free serum resulted in standard curves which were indistinguishable from those in which Ts-free serum was used, all subsequent curves were set up in BSA buffer. Standard curves developed as described above were also compared with curves derived from incubating comparable mixtures with the exception that fresh BSA was used instead of the column eluates. Although the curves with fresh BSA and BSA from column eluates were generally superimposable, they occasionally diverged in the area of the lowest B/F ratios. Thus, for assay of plasma, standard curves using the Sephadex columns were always employed.

Since the recovery of To in the Sephadex column BSA eluates was not significantly reduced when up to 0.5 ml plasma was applied, the assay procedure allowed flexibility in the selection of appropriate volumes of plasma for assay so that the B/F ratio would fall in the most sensitive portion of the standard curve. Fig. 2 shows that the T<sub>8</sub> concentrations of different volumes of plasma from representative hypothyroid, euthyroid, and hyperthyroid subjects varied less than 10% from the average of three to five determinations. The constancy of the T<sub>8</sub> concentration when different volumes of the same plasma were assayed and the lack of detectable crossreaction with other moieties in plasma indicates that the observed changes in B/F ratio reflect displacement of Ts-125I from antibody by endogenous Ts. In practice, the assay of 0.1 to 0.2 ml plasma from euthyroid subjects, 0.2-0.4 ml from hypothyroid subjects and 0.02-0.08 ml plasma from hyperthyroid subjects resulted in B/F ratios which fell in the steepest

<sup>\*</sup> Range indicated by parentheses. Serum T<sub>3</sub> was undetectable in two samples and 6 ng/100 ml in two samples.

TABLE II

Effect of  $T_4$  Addition to  $T_3$ -Free Serum on  $T_3$  Determination

| Experiment | Purification | T4 added | Total T <sub>3</sub> | T3/T4 |
|------------|--------------|----------|----------------------|-------|
|            |              | pg×10 1  | Þg                   | %     |
| 1          |              | 5        | 470                  | 1.12  |
|            | +            | 2.5      | 80                   | 0.38  |
|            | +            | 5.0      | 189                  | 0.45  |
| 2          | -            | 5        | 395                  | 0.94  |
|            | +            | 5        | 129                  | 0.31  |
|            | +            | 10       | 286                  | 0.34  |
| 3          | _            | 5        | 458                  | 1.09  |
|            | +            | 2.5      | 48                   | 0.23  |
|            | +            | 5.0      | 126                  | 0.30  |
|            | +            | 10.0     | 226                  | 0.27  |

The  $T_3$  concentration of the  $T_3$ -free serum was undetectable to 5 ng/100 ml.  $T_4$  was purified by two cycles of paper chromatography in *t*-amyl alcohol:2n NH<sub>4</sub>OH:hexane, 5:6:1. Nonpurified or purified  $T_4$  was added to 0.1 ml  $T_3$ -free serum. The  $T_3$  content of the  $T_3$ -free serum (0.1 ml) was less than 5 pg.  $T_3/T_4 = 100 \times moles T_3/moles T_4$ .

portion of the standard curve (50–150 pg per assay tube).

The recovery of added  $T_s$  was assessed by measuring the  $T_s$  concentration in plasma before and after addition of different amounts of nonradioactive  $T_s$  (Table I). Exact amounts of  $T_s$  were added to  $T_s$ -free serum or plasma samples with baseline  $T_s$  concentrations in the low, middle, and high euthyroid range (see below). In four experiments, 90.6-107.5% of added  $T_s$  was recovered. The mean recovery for all  $T_s$  additions was 97.9%.

 $T_4$  to  $T_3$  conversion and  $T_4$  crossrcaction. The large  $T_4$  to  $T_3$  concentration ratio in plasma (40–70:1) and the well known property of  $T_4$  to deiodinate in vitro are potentially major problems in the determination of  $T_3$ .

Table III

Determination of  $T_3$ - $^{125}I$  After Addition of  $T_4$ - $^{125}I$  to  $T_3$ -Free Serum

| Experiment | Condition | $T_{3}$ -125 $I/T_{4}$ -125 $I$ |
|------------|-----------|---------------------------------|
|            |           | %                               |
| 1          | C         | 0.162                           |
|            | E         | 0.211                           |
| 2          | С         | 0.227                           |
|            | E         | 0.133                           |

 $T_3$ -128I was determined by cochromatography to constant isotopic ratio to added  $T_3$ -131I as described in Methods. C = control (incubated at 4°C for 18 hr); E = experimental (sample subjected to complete  $T_3$  assay procedure).

As little as 0.5% conversion of T<sub>4</sub> to T<sub>3</sub> in vitro or cross-reaction between T<sub>4</sub> and T<sub>3</sub> antibody will result in a 30-50% overestimation of the T<sub>3</sub> concentration in normal serum. Both of these potential sources of error were therefore carefully examined in the current assay.

T4 to T8 conversion was studied by measuring the T2 content of T3-free serum which had been enriched with T<sub>4</sub>. For three separate lots of T<sub>4</sub> the measured T<sub>8</sub> was equivalent to 1.05% (range: 0.94-1.12%) of the T<sub>4</sub> added (Table II). After chromatographic purification of the T4 preparations, the mean observed T8 was substantially reduced to 0.36% (range: 0.23–0.45%). Since in pilot studies, the generation of 0.2-0.4% T<sub>3</sub> during serial paper chromatographic purification of T<sub>4</sub> has repeatedly been observed in this laboratory, it was considered probable that the T<sub>3</sub> measured after addition of chromatographically purified T4 was a result of residual T<sub>8</sub> in the T<sub>4</sub> preparations and not to T<sub>4</sub> to T<sub>3</sub> conversion. Other experiments were therefore designed in which the percentage of T<sub>8</sub>-125 I was measured after purified T<sub>4</sub>-<sup>125</sup>I was processed through the Sephadex columns and incubated with T<sub>3</sub> antibody (Table III). In two experiments, the percentage of  $T_3$ -125 I (100  $\times$  $T_{3}$ -<sup>125</sup> $I/T_{4}$ -<sup>125</sup>I) observed after the Sephadex column procedure and that of the added T<sub>4</sub>-125I were indistinguishable within the limits of precision of the chromatographic analyses. Thus, it was concluded that no detectable T<sub>4</sub> to T<sub>3</sub> conversion (less than 0.1%) occurred during the assay procedure.

The variable T<sub>3</sub> contamination of chromatographically purified T<sub>4</sub> preparations precluded studies of T<sub>4</sub> crossreaction in which the effect of added T<sub>4</sub> on the B/F ratio of T<sub>8</sub>-125I is examined. A new approach to this problem was therefore taken. The concentration of T<sub>3</sub> was determined in diluted T3-free serum enriched with T<sub>3</sub> and T<sub>4</sub> before and after the serum T<sub>4</sub>: T<sub>3</sub> concentration ratio was substantially reduced by Sephadex chromatography at pH 8.6 (Table IV). If the antibody exhibits significant cross-reaction between T<sub>4</sub> and T<sub>3</sub>, measurement of the apparent T<sub>8</sub> concentration in sera with high T4: T3 concentration ratios should be greater than measurements after the T4: T8 ratios are reduced. In three experiments in which the T<sub>4</sub>: T<sub>3</sub> concentration ratios were reduced three- to eightfold, the extent of T4 cross-reaction varied from undetectable to between 0.1 and 0.2% of the T<sub>8</sub> value. The average T<sub>4</sub> crossreaction for the three experiments was less than 0.1%. Cross-reaction of 0.1% should result in less than a 7% overestimation of the T<sub>8</sub> level in euthyroid sera.

Assay conditions. After it was shown in eight subjects that the T<sub>3</sub> concentration was not significantly different in serum or heparinized plasma, serum or plasma were used interchangeably in clinical studies. In two experiments no change in T<sub>3</sub> concentration was

observed after repeated freezing and thawing (six times in 24 hr) or after plasma was allowed to stand at room temperature for 24 hr. The  $T_{\rm e}$  concentration was unaltered after storage for at least two months at  $-20^{\circ}$ C.

Sensitivity. The lowest  $T_a$  concentration detectable depends on the maximum volume of serum which can be introduced into the assay (0.5 ml), the recovery of  $T_a$  in the assay tubes and the sensitivity of the standard curve. Since a significant reduction in B/F ratio is regularly observed with the addition of 10 pg  $T_a$ , the lowest limit of detection is 10 pg  $T_a$  ÷ recovery (average 33%) = 30 pg. This is equivalent to a concentration of 6 ng/100 ml when a 0.5 ml serum sample is assayed (30 pg ÷ 0.5 × 100).

Precision. The mean coefficient of variation for 8-10 determinations of the same serum in three different assays was 5.8%. The coefficient of variation for a single serum determined in 23 consecutive assays over a 10 wk interval was 8.2%. Duplicate determinations within an assay using either the same or different serum volumes differed by less than 6%. There was no difference in precision when the T<sub>8</sub> concentration was in the hypothyroid, euthyroid, or hyperthyroid range.

Clinical studies. The concentration of T<sub>s</sub> in the serum or plasma of euthyroid, hypothyroid, and hyperthyroid subjects is shown in Fig. 3. In euthyroid subjects, the range of T<sub>s</sub> concentration was 100–196 ng/100 ml. In this group the mean serum T<sub>s</sub> was 146±24 (sd) ng/100 ml. The mean T<sub>s</sub> concentration in 29 hypothyroid patients was 44±26 ng/100 ml. None of the values in the hypothyroid group fell within 2 sd of the mean of the euthyroid group. The T<sub>s</sub> concentration generally correlated with the severity of hypothyroidism. The lowest value, 7 ng/100 ml, was found in a patient in myxedema coma. In other patients with severe hypothyroidism, serum T<sub>s</sub> concentration was generally between 10 and 30 ng/100 ml. In 22 hyperthyroid pa-

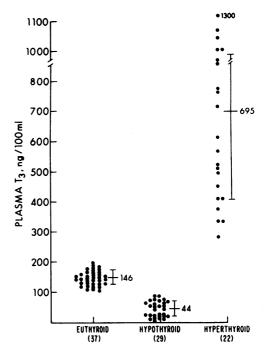



FIGURE 3 Plasma T<sub>3</sub> concentrations in euthyroid, hypothyroid, and hyperthyroid subjects. Individual values are plotted. The mean ±sp for each group is indicated.

tients, mean serum  $T_3$  concentration was  $665\pm289$  ng/ 100 ml. The lowest value in this group, 289 ng/100 ml, occurred in a patient with clinically mild hyperthyroidism due to Graves' disease. No cases of  $T_3$  thyrotoxicosis were encountered in a 6 month interval in which 19 consecutive hyperthyroid patients were studied.

Plasma T<sub>3</sub> and T<sub>4</sub> concentrations were measured at frequent intervals during a 24 hr period in three euthyroid subjects. As shown in Fig. 4, the plasma levels of both hormones were relatively constant throughout the day.

TABLE IV
T<sub>4</sub> Cross-reaction

| Experiment | Before Sephadex column         |                  | After Sephadex column |                |                         |                    |
|------------|--------------------------------|------------------|-----------------------|----------------|-------------------------|--------------------|
|            | T <sub>4</sub> /T <sub>3</sub> | T <sub>3</sub>   | T4/T2                 | Ta expected    | T <sub>3</sub> observed | Cross-<br>reaction |
|            |                                | ng/100 ml        |                       | ng/100 ml      | ng/100 ml               | %                  |
| 1          | 26.2                           | $255.8 \pm 11.4$ | 8.8                   | $65.2 \pm 2.1$ | $67.5 \pm 2.3$          | 0.1                |
| 2          | 49.7                           | $134.8 \pm 7.3$  | 16.2                  | $22.8 \pm 1.1$ | $20.3 \pm 2.7$          | 0.1-0.2            |
| 3          | 43.6                           | $153.5 \pm 5.7$  | 5.3                   | $38.6 \pm 1.0$ | $42.2 \pm 0.8$          |                    |

The concentration of  $T_4$  added to the 1/20 diluted  $T_3$ -free serum was 8  $\mu$ g/100 ml.  $T_3$  expected was calculated as the product initial  $T_3$  concentration and recovery  $T_3$ -125I from the Sephadex columns. The calculated cross-reaction was based on the precision of the  $T_3$  determinations, recovery of  $T_3$ -125I and  $T_4$ -131I, and the extent of change in the  $T_4$ / $T_3$  ratio. Cross-reaction was calculated by determining if the difference between the  $T_3$  expected and the  $T_3$  observed could be accounted for by a fraction of the  $T_4$  remaining after Sephadex chromatography.  $T_3$  concentration is expressed as mean  $\pm$ sp for eight samples.

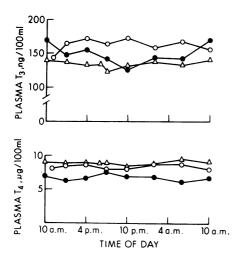



FIGURE 4 Plasma T<sub>3</sub> and T<sub>4</sub> concentrations at different times throughout the day in three euthyroid subjects.

Serum T<sub>3</sub> and T<sub>4</sub> concentrations were also measured in hypothyroid patients who were maintained euthyroid by treatment with different thyroid medications. Sera were obtained at frequent intervals (1-2 hr) after the entire daily dose of medication was ingested. After T<sub>3</sub> ingestion, the plasma T<sub>8</sub> concentration of four subjects, initially in the normal range, increased to peak values of 450-700 ng/100 ml within 1-2 hr (Fig. 5). Thereafter, T<sub>8</sub> concentration decreased toward the normal range. 24 hr after ingestion, just before administration of the next daily dose, plasma T<sub>3</sub> concentration had returned to the initial euthyroid values. An entirely different pattern of hormone concentrations was observed in four patients who were taking L-thyroxine (Fig. 6). Plasma T<sub>3</sub> concentration remained essentially unchanged throughout the 24 hr after ingestion of T<sub>4</sub>. Plasma T<sub>4</sub>, however, increased transiently 20-40% in three of four patients studied within the first 5 hr after hormone administration. In the patients treated with T4: T3, 4:1 mixtures (Fig. 7) or desiccated thyroid (Fig. 8) the serum T<sub>4</sub> concentration was relatively constant throughout the day. The pattern of T<sub>8</sub> concentration was, however, quite variable after ingestion of these medications. After the synthetic T4: T3 mixture plasma T3, initially at or slightly above the upper limit of the normal range. increased transiently to levels which ranged from 320 to 450 ng/100 ml. The increase occurred within the first 1-2 hr in one patient but not until 4-8 hr in two other patients. After desiccated thyroid administration, plasma T<sub>3</sub> was unchanged in one patient but increased significantly (100%) in two others. Serum T<sub>8</sub> in one patient, who was taking 60 mg desiccated thyroid per day, increased from a hypothyroid level (70 ng/100 ml) to an euthyroid value (142 ng/100 ml) after drug ingestion (Fig. 8).

### DISCUSSION

This report describes a new procedure for the radioimmunoassay (RIA) of serum T<sub>8</sub> in which the iodothyronines are separated from the plasma proteins by Sephadex column chromatography before incubation with anti-T<sub>8</sub> antibody. The assay of T<sub>8</sub> in the presence of plasma proteins using a standard curve set up in buffer should theoretically result in an overestimation of T<sub>8</sub> concentration since T<sub>8</sub> bound by the plasma proteins is not available for binding by anti-T<sub>8</sub> antibody. The observed percentage of antibody bound T<sub>8</sub> is thereby reduced.

This theoretical consideration is supported by comparison of the mean plasma T<sub>8</sub> concentration of euthyroid individuals using the same antibody but different assay conditions. Gharib, Ryan, Mayberry, and Hockert have reported that the mean plasma T3 concentration of a euthyroid group was 218±55 ng/100 ml as measured by RIA in the presence of plasma proteins (15). Using an assay procedure which separates the iodothyronine from the plasma proteins before incubation with antibody, there was no significant difference between the T<sub>8</sub> concentration of a large number of sera when assayed with this antiserum or an antiserum produced in our laboratory. Mean plasma T<sub>3</sub> in euthyroid subjects as measured with our antiserum is 146±24 ng/100 ml. Moreover, others have reported that the mean plasma T<sub>3</sub> of normal subjects is between 100-145 ng/100 ml as determined in the presence of plasma proteins but with plasma binding blocked by the addition of  $d_{i}$ -tetrachlorothyronine (16), 5,5'-diphenylhydantoin (17), acetylsalicylic acid (19) or

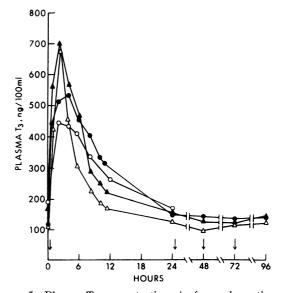



FIGURE 5 Plasma  $T_8$  concentrations in four athyreotic patients during treatment with  $T_8$ . The vertical arrows indicate the time at which the entire daily  $T_8$  dose was ingested. The dose of  $T_8$  was 75  $\mu$ g/day for three subjects and 50  $\mu$ g/day for one subject ( $\triangle$ — $\triangle$ ).

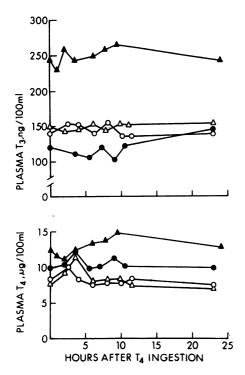



FIGURE 6 Plasma  $T_3$  and  $T_4$  concentrations in four athyreotic patients during treatment with  $T_4$ . All patients received 200  $\mu g$   $T_4$  per day. The dose of  $T_4$  in the one subject with elevated plasma  $T_3$  and  $T_4$  levels ( $\triangle - \triangle$ ) was subsequently reduced to 150  $\mu g/\text{day}$ . This change resulted in a decrease in plasma  $T_3$  and  $T_4$  to the normal range without an elevation in serum TSH concentration.

8-anilino-l-napththalene-sulfonic acid (18). A physical method for the removal of the plasma binding proteins. Sephadex column chromatography, was selected for the present studies since from published reports concerning the agents listed above, we were not certain that the added compounds completely blocked plasma protein binding in plasma with increased iodothyronine binding capacity. Moreover, one of the compounds, d,l-tetrachlorothyronine, may not be generally available in a pure and stable form.<sup>3</sup> At the time of this writing, however, there is insufficient experience with any of the reported assay procedures to allow generalizations regarding the superiority of any particular procedure with the exception that it appears important either to remove the plasma proteins or block their binding of T<sub>3</sub>.

The assay procedure described herein satisfies a number of criteria which are of cardinal importance for any T<sub>8</sub> measurement. First, T<sub>8</sub> added to sera of widely different T<sub>3</sub> concentrations was quantitatively recovered. Second, the calculated T<sub>8</sub> concentrations of hypo-, eu-, and hyperthyroid sera were independent of the volume of serum applied to the columns. Third, conversion of T<sub>4</sub> to T<sub>8</sub> during the assay procedure was undetectable (<0.1%). Fourth, the capacity of the anti-T<sub>3</sub> antibody to cross-react with endogenous T4 was also undetectable (<0.1%). Fifth, as demonstrated from the identical standard curves run in different volumes of T3-free serum or 0.3% BSA, the Sephadex column procedure effectively removed all possible interfering substances from the plasma. Moreover, the Sephadex columns did not introduce any materials which alter the B/F ratio of tracer T<sub>3</sub> and anti-T<sub>3</sub> antibody. Finally, the precision of measurement within an assay, reproducibility between assays, and sensitivity of the assay system were all well within the limits required for both clinical and investigative use.

The sensitivity of T<sub>i</sub> measurement by the Sephadex column procedure is substantially improved over published methods in which the volume of serum which is assayed is generally limited to 0.1 ml (13, 15–17). Without altering assay conditions, as much as 0.5 ml serum can

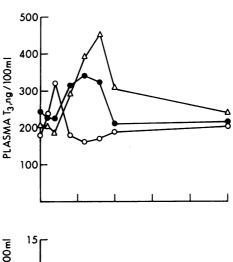





FIGURE 7 Plasma  $T_8$  and  $T_4$  concentrations in three hypothyroid patients during treatment with a  $T_4$ :  $T_8$  (4:1) mixture. The dose was 180  $\mu g$   $T_4$  and 45  $\mu g$   $T_3$  per day.

<sup>&</sup>lt;sup>8</sup> Evidence suggesting that the latter compound might contain or generate during standing sufficient d,l-trichlorothyronine, a T<sub>8</sub> analogue, to displace T<sub>8</sub> from antibody sites was obtained in two experiments performed in our laboratory before the present method was developed. In these, we noted displacement of tracer T<sub>8</sub> from anti-T<sub>8</sub> antibody by addition of d,l-tetrachlorothyronine (kindly supplied by Dr. Robert E. Meltzer, Warner-Lambert Research Laboratories, Compound W1633).

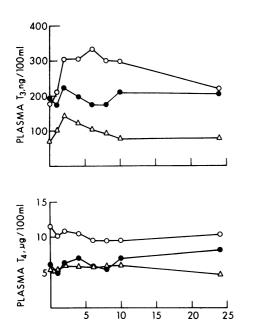



FIGURE 8 Plasma  $T_3$  and  $T_4$  concentrations in three hypothyroid patients during treatment with desiccated thyroid. The dose was 120 mg/day in two subjects and 60 mg/day in a third ( $\triangle$ — $\triangle$ ). This subject ( $\triangle$ — $\triangle$ ) was the only patient in this series of experiments who was somewhat hypothyroid (serum TSH = 55  $\mu$ U/ml).

HOURS AFTER DESICCATED THYROID INGESTION

be processed on the Sephadex columns. The lowest limit of detection is approximately 6 ng/100 ml. Indeed, the Ta concentration in one patient in myxedema coma was 7 ng/100 ml and in a number of patients with severe hypothyroidism was between 10 and 25 ng/100 ml. The low T<sub>3</sub> concentrations observed in severe hypothyroidism and lack of overlap between the hypothyroid and euthyroid range contrasts with other radioimmunoassays of T<sub>3</sub> in which the reported mean ±sp for hypothyroid subjects was  $103\pm43$  (15),  $99\pm24$  (17), and  $59\pm9$  ng/ 100 ml (16). In the system developed by Mitsuma, Nihei, Gershengorn, and Hollander (16), there was no overlap between the hypo- and euthyroid range. However, although their assay system, modified for hypothyroid sera by increasing fourfold the volume of sera and amount of added d,l-tetrachlorothyronine, can theoretically detect T<sub>3</sub> concentrations as low as 12.5 ng/100 ml, T<sub>3</sub> concentrations less than 44 ng% were not observed in hypothyroid subjects. The disparity between their data and those from the present hypothyroid patients cannot be attributed to geographic factors. The possibility exists, therefore, that hypothyroid sera or the increased amount of added d,l-tetrachlorothyronine may introduce a blank which prevents measurement of extremely low T<sub>3</sub> concentrations by the procedure of Mitsuma et al. Thus a major advantage of the Sephadex column procedure appears to be the capacity to measure Ta concentrations in the hypothyroid range with greater precision than has heretofore been possible.

The application of radioimmunoassay technology with antibodies specific for T<sub>3</sub> has rendered the measurement of serum T<sub>3</sub> concentration relatively simple and precise. Serum T<sub>3</sub> determinations have thus become an important tool for the investigation of numerous aspects of thyroid physiology and pathophysiology and should soon become generally available to aid clinicians in the diagnosis and treatment of thyroid disease. A number of experimental considerations based on different lines of evidence suggests that, in the rat, T<sub>4</sub> is a prohormone without intrinsic biologic activity (4-7). We have recently shown that a similar relationship exists in man 2 and have suggested that under conditions of adequate iodine supply and in the absence of excess TSH stimulation, the normal gland secretes primarily T<sub>4</sub>. Under such circumstances almost all T<sub>3</sub> appears to be derived from the extrathyroidal conversion of T4. Thus, the serum T3 concentration should be a more direct measure of thyroidal status than serum T<sub>4</sub>. Indeed, clinically euthyroid patients with decreased T<sub>1</sub> concentrations but normal concentrations of T<sub>3</sub> have been described by others (9) and have been noted in our clinic too. The use of serum Ta in the assessment of thyroidal status in hypothyroid patients receiving replacement therapy with different thyroid hormone preparations has not been emphasized previously. The increase in serum T<sub>3</sub> concentration to the hyperthyroid range which was observed after ingestion of T<sub>3</sub> is similar to that reported by Lieblich and Utiger (17) while these studies were in progress. An increase in T<sub>3</sub> concentration was also noted after ingestion of desiccated thyroid and a T<sub>4</sub>: T<sub>3</sub> mixture but not after ingestion of T<sub>4</sub>. The difference in the magnitude of increase and time course of T<sub>3</sub> concentration during therapy with these medications may be related to the chemical form of hormone administered, the nature of the pharmaceutical preparation, the absorption of hormone by the patient, or a combination of these factors. Of particular interest, is that the mean plasma T<sub>3</sub> concentration calculated by integrating the area under the plasma T<sub>3</sub> curves (Figs. 5-8) was significantly greater (200-290 ng/100 ml) than the upper limit of the normal range for all patients who were clinically euthyroid after treatment with T<sub>3</sub>, T<sub>4</sub>: T<sub>3</sub> mixtures, or desiccated thyroid. Although no direct data are currently available, possible deleterious effects on different organ systems of a modest increase in plasma T<sub>3</sub> concentration sustained over the course of years should be considered. Until this problem is evaluated it would appear reasonable to use synthetic T<sub>4</sub> for hormone replacement since the constancy of serum T<sub>3</sub> and T<sub>4</sub> after administration of this preparation most closely mimics the plasma hormone concentrations observed in euthyroid subjects throughout the day. It is clear, however, that if the other medications are employed, careful consideration must be given to the relationship of the time medications are ingested to that of blood sampling in order to obtain T<sub>3</sub> concentrations which reflect the mean plasma hormone concentration and not a transient postabsorptive elevated value. Additional studies to assess the comparative adequacy of various thyroid hormone preparations in replacement therapy are in progress.

## **ACKNOWLEDGMENTS**

The authors thank Mr. Kenneth Gans for expert technical assistance and Mrs. Annette Friedman for secretarial help. We also thank Mr. Barry Shapiro for the illustrations.

This work was supported by U. S. Public Health Service Grant 9 RO1 AM 15421-12 and U. S. Army Contract DA-49-193-MD-2967.

#### REFERENCES

- Blackburn, C. M., W. M. McConahey, F. R. Keating, Jr., and A. Albert. 1954. Calorigenic effects of single intravenous doses of L-triiodothyronine and L-thyroxine in myxedematous persons. J. Clin. Invest. 33: 819.
- Braverman, L. E., S. H. Ingbar, and K. Sterling. 1970.
   Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J. Clin. Invest. 49: 855.
- Woeber, K. A., R. J. Sobel, S. H. Ingbar, and K. Sterling. 1970. The peripheral metabolism of triiodothyronine in normal subjects and in patients with hyperthyroidism. J. Clin. Invest. 49: 643.
- Schwartz, H. L., M. I. Surks, and J. H. Oppenheimer. 1971. Quantitation of extrathyroidal conversion of Lthyroxine to 3,5,3'-triiodo-L-thyronine in the rat. J. Clin. Invest. 50: 1124.
- Schadlow, A. R., M. I. Surks, H. L. Schwartz, and J. H. Oppenheimer. 1972. Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science (Wash. D. C.). 176: 1252.
- Oppenheimer, J. H., H. L. Schwartz, and M. I. Surks. 1972. Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation for the antithyroxine effect of propylthiouracil and further support of the concept that triiodothyronine is the active thyroid hormone. J. Clin. Invest. 51: 2493.
- Oppenheimer, J. H., D. Koerner, H. L. Schwartz, and M. I. Surks. 1972. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J. Clin. Endocrinol. Metab. 35: 330.

- Nauman, J. A., A. Nauman, and S. C. Werner. 1967.
   Total and free triiodothyronine in human serum. J. Clin. Invest. 46: 1346.
- Sterling, K., D. Bellabarba, E. S. Newman, and M. A. Brenner. 1969. Determination of triiodothyronine concentration in human serum. J. Clin. Invest. 48: 1150.
- Larsen, P. R. 1971. Technical aspects of the estimation of triiodothyronine in human serum: evidence of conversion of thyroxine to triiodothyronine during assay. Metab. (Clin. Exp.). 20: 609.
- Fisher, D. A., and J. H. Dussault. 1971. Contribution of methodological artifacts to the measurement of T<sub>a</sub> concentration in serum. J. Clin. Endocrinol. Metab. 32: 675.
- 12. Brown, B. L., R. P. Ekins, S. M. Ellis, and W. S. Reith. 1970. Specific antibodies to triiodothyronine hormone. *Nature (Lond.)*. 226: 359.
- Gharib, H., W. E. Mayberry, and R. J. Ryan. 1970.
   Radioimmunoassay for triiodothyronine: a preliminary report, J. Clin. Endocrinol. Metab. 31: 709.
- Chopra, I. J., J. C. Nelson, D. H. Solomon, and G. H. Beall. 1971. Production of antibodies specifically binding triiodothyronine and thyroxine. J. Clin. Endocrinol. Metab. 32: 299.
- Gharib, H., R. J. Ryan, W. E. Mayberry, and T. Hockert. 1971. Radioimmunoassay for triiodothyronine (T<sub>3</sub>). I. Affinity and specificity of the antibody for T<sub>3</sub>. J. Clin. Endocrinol. Metab. 33: 509.
- Mitsuma, T., N. Nihei, M. C. Gershengorn, and C. S. Hollander. 1971. Serum triiodothyronine: measurements in human serum by radioimmunoassay with corroboration by gas-liquid chromatography. J. Clin. Invest. 50: 2679.
- 17. Lieblich, J., and R. D. Utiger. 1972. Triiodothyronine radioimmunoassay. J. Clin. Invest. 51: 157.
- Chopra, I. J., and R. W. Lam. 1972. Use of 8-anilinol-naphthalene-sulfonic acid (ANS) in radioimmunoassay (RIA) of triiodothyronine (T<sub>3</sub>) in unextracted serum. Clin. Res. 20: 216. (Abstr.)
- Larsen, P. R. 1972. Direct immunoassay of triiodothyronine in human serum. J. Clin. Invest. 51: 1939.
- Braverman, L. E., A. G. Vagenakis, A. E. Foster, and S. H. Ingbar. 1971. Evaluation of a simplified technique for the specific measurement of serum thyroxine concentration. J. Clin. Endocrinol. Metab. 32: 497.
- Yalow, R. S., and S. A. Berson. 1960. Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39: 1157.
- 22. Odell, W. D., J. F. Wilber, and R. D. Utiger. 1967. Studies of thyrotropin physiology by means of radio-immunoassay. Recent Progr. Hormone Res. 23: 47.